Generating entanglement between distant quantum systems is at the core of quantum networking and would enable applications such as enhanced quantum sensing and distributed quantum computing. Photonic links provide a flexible and scalable platform to transfer quantum information and broker entanglement.
In recent years, numerous theoretical protocols for remote entanglement generation have been proposed, of which many have been experimentally realized. In this seminar I present a modular theoretical framework to elucidate the general mechanisms of photon-mediated entanglement generation between single spins in atomic or solid-state systems [arXiv:2310.19878]. Our framework categorizes existing protocols at various levels of abstraction and allows for combining the elements of different schemes in new ways. These abstraction layers make it possible to readily compare protocols for different quantum hardware.
Speaker's Bio
Hans Beukers is a PhD candidate in the group of prof. Ronald Hanson at QuTech (Delft University of Technology), working on quantum networks using color center in diamond. After finishing medical school and physics at University of Groningen, he decided to pursue his fascination for quantum mechanics. While working on a multinode quantum network based on nitrogen-vacancy centers, he got interested in the search for a more efficient and integrable quantum network node. Currently, he focusses on the control of tin-vacancy based qubits. While exploring the entanglement requirements for these different systems, he worked on a tutorial to aid designing and understanding of suitable entanglement protocols.